1 min read
AI Data Pipeline Patterns: Intelligent ETL and Processing
Integrating AI into data pipelines enables intelligent processing, classification, and enrichment. Let’s explore the key patterns.
AI-Enhanced Pipeline Architecture
from dataclasses import dataclass
from typing import Callable, Any
@dataclass
class PipelineStage:
name: str
processor: Callable
ai_enabled: bool = False
class AIPipeline:
def __init__(self, ai_client):
self.ai_client = ai_client
self.stages = []
def add_stage(self, stage: PipelineStage):
self.stages.append(stage)
async def run(self, data):
current = data
for stage in self.stages:
if stage.ai_enabled:
current = await stage.processor(current, self.ai_client)
else:
current = stage.processor(current)
return current
# Example: Classification pipeline
pipeline = AIPipeline(ai_client)
pipeline.add_stage(PipelineStage("extract", extract_data))
pipeline.add_stage(PipelineStage("classify", ai_classify, ai_enabled=True))
pipeline.add_stage(PipelineStage("enrich", ai_enrich, ai_enabled=True))
pipeline.add_stage(PipelineStage("load", load_to_warehouse))
result = await pipeline.run(raw_data)
AI-powered pipelines transform raw data into intelligent, enriched datasets. Design for both batch and streaming scenarios.