1 min read
Fabric AI Deep Integration: Advanced Patterns
Microsoft Fabric and Azure AI services integrate deeply. Let’s explore advanced patterns for building AI-powered analytics solutions.
Advanced Fabric + AI Patterns
# Fabric notebook with AI integration
from synapse.ml.cognitive import OpenAICompletion
from pyspark.sql import functions as F
# Scale AI across Spark
openai = OpenAICompletion() \
.setSubscriptionKey(key) \
.setDeploymentName("gpt-4o") \
.setPromptCol("prompt") \
.setOutputCol("ai_result")
# Process millions of rows
df = spark.read.table("lakehouse.documents")
df_with_prompts = df.withColumn("prompt",
F.concat(F.lit("Summarize: "), F.col("content")))
df_enriched = openai.transform(df_with_prompts)
df_enriched.write.mode("overwrite").saveAsTable("lakehouse.documents_enriched")
# Vector search in Fabric
def semantic_search(query_embedding, top_k=10):
return spark.sql(f"""
SELECT id, content, embedding,
vector_cosine_similarity(embedding, array({','.join(map(str, query_embedding))})) as similarity
FROM lakehouse.embeddings
ORDER BY similarity DESC
LIMIT {top_k}
""")
Fabric + AI creates a powerful platform for intelligent analytics. Leverage Spark’s scale with AI’s intelligence.